Machine Learning Algorithms for Ischemic Heart Disease (IHD)
Prediction

Xiao Gu

December 16, 2022

Introduction

Ischemic heart disease (IHD) has been identified as a leading cause of death globally (1). Compelling
evidence showed that lifestyle changes could be effective strategies for the secondary prevention of THD (2).
Therefore, to reduce the burden of THD mortality, an efficient tool for IHD screening and early diagnosis
is warranted. A machine learning algorithm that is developed with serum metabolites, cardiometabolic
biomarkers, and self-reported phenotypic data is promising in simplifying the process and reducing the cost of
IHD screening/diagnosis. ITHD status could be accurately detected with a simple blood draw and metabolomic
profiling. In this project, I aim to develop such an algorithm using data from a European population.

I will use data from the MetaCardis consortium that recruited participants aged 18-75 years from Denmark,
France, and Germany (3). The data was published early this year as the supplementary material of an article
on Nature Medicine (3). The original study included 372 individuals with THD. These THD cases were further
classified into acute coronary syndrome (n = 112), chronic ischemic heart disease (n = 158), and heart failure
(n = 102). With a case-control design, the study also included 3 groups of controls matched on various
factors. The raw data includes 1,882 observations, including repeated records with the same participant ID
but different case-control statuses.

For this project, I will use records from the 372 THD cases and 372 controls matched on type 2 diabetes (T2D)
status and body mass index (BMI). I will also extract data for age, gender, fasting plasma triglycerides,
adiponectin, and CRP, systolic and diastolic blood pressure, left ventricular ejection fraction, physical activity
level, and 1,513 log-transformed values of serum metabolites.

Exploratory data analysis

After reading in the data, I first filtered the observations to keep the IHD cases and their controls matched
by T2D status and BMI. I then merged metabolites data with cardiometabolic biomarkers and self-reported
phenotypic data to create a main dataset with 744 rows and 1522 columns. I noticed that several participants
do not have any metabolites data and, therefore, need to be removed. Additionally, around 30% of participants
had missing values for left ventricular ejection fraction and physical activity level. Many machine learning
techniques could not be implemented with that many missing values, and it would also not be appropriate to
replace the missing values with any arbitrarily selected value. So, I removed these two potential predictors
from my analyses. Finally, for variables with less than 10% missing data, I replaced the missing values with
the median of the non-missing data. The cleaned main dataset had 603 rows and 1522 columns. The first 6
rows of the cleaned main dataset were printed in the Appendix.

I then preprocessed the data to remove non-informative predictors with near-zero variances. Given that I
planned to train at least one of my algorithms with regression, it would be better to have more predictors
normally distributed so that model efficiencies could be improved. I tested the normality of each predictor
with the Shapiro-Wilks Test and summarized the p-values. I found that only 101 predictors are normally
distributed. It is also noteworthy that the metabolite values from the raw data were all log-transformed.
Obviously, log transformation did not normalize the distributions successfully. So, I transformed all metabolite
values back to the original scale and used rank-based inverse normal transformation (INT) to normalize

the distributions instead. As examples, histograms showing the distributions of oleoylcarnitine (C18:1) and
S-methylcysteine sulfoxide before and after the transformation were shown (Figure 1-2). I ended up having
840 predictors normalized successfully.

Methodologies to use

The outcome that my algorithm aimed to predict is the binary IHD status (non-case = 0, case = 1). Considering
that T had 1,422 predictors, I would use principal component analysis (PCA) to reduce dimensions. I would
keep principal components that account for at least 70% of variability as new predictors and train an
algorithm with logistic regression and an algorithm with K-nearest neighbor (KNN). Given that the principal
components are hard to interpret, and algorithms developed based on PCA could be difficult to implement, I
would train another KNN-based algorithm with all 1,422 predictors instead. Random forest would be the 4th
training method I would use. Finally, I would use an ensemble to combine the results of all four algorithms.
For all algorithms, I would evaluate the overall accuracy, sensitivity, specificity, F; score, and ROC curve. I
would use a [of 2 to calculate the F; score because higher sensitivity is more important than high specificity
when predicting disease. In other words, a false positive will be less costly than a false negative in this
scenario. I would also use cross-validation and bootstrapping to tune the model parameters.

Results

For all the model training and fitting, I partitioned the main dataset, which includes IHD case status and
all predictors, into a training (train_set) and a testing (test_set) dataset. Matrices for predictors and
cases were also created. I then trained and assessed the models with the following 4 approaches: 1) Logistic
regression with principal components as predictors (PCA + Logistic); 2) K-nearest neighbors with principal
components as predictors (PCA + KNN); 3) K-nearest neighbors with serum metabolites, cardiometabolic
biomarkers, and self-reported phenotypic data as predictors (KNN); and 4) Random forest with serum
metabolites, cardiometabolic biomarkers, and self-reported phenotypic data as predictors (RF).

PCA + Logistic regression

The PCA in the training set generated 483 principal components (PCs) from 1,422 predictors, including age,
gender, fasting plasma triglycerides, adiponectin, and CRP, systolic and diastolic blood pressure, and 1,415
inverse normal transformed serum metabolites. After evaluating the proportion of variance explained by
each PC, I selected the first 69 PCs that accounted for 70% of the total variance as new predictors. The
proportion of variance explained by each of the first 69 PCs was printed in the Appendix. I fitted a logistic
regression with THD cases as the dependent variable and the 69 PCs as the independent variables. For the
logistic regression, there was no model parameter to tune. To make predictions in the testing set, I used the
PC rotations to transform all 1,422 predictors in the testing set into 483 PCs and kept the first 69 PCs. The
logistic regression estimates were then used to predict the probability of having THD cases in the testing set.
Participants with a predicted probability of having an THD over 0.5 were defined as predicted IHD cases.

The overall accuracy of my predicted THD cases from the logistic regression was 0.875 with a 95% confidence
interval of (0.802, 0.928). This algorithm had a sensitivity of 0.892, a specificity of 0.854, and an F score of
0.890. I also plotted the ROC and observed an area under the curve (AUC) of 0.946, which was very high
(Figure 3).

PCA + KNN

I then used KNN to train the algorithm with the 69 PCs as predictors. To select the parameter K that
maximizes the accuracy, I used 10-fold cross-validation with bootstrapping as the resampling scheme. Given
that I have already reduced the dimension to 69 and we only have 603 observations, I did not worry much
about the computation time of using 10-fold cross-validation. I fitted the model with K values from 2 to 100
with 20 as the increment. After plotting the accuracy under different K values, I was not able to identify a
clearly optimized K, given that the curve of accuracy did not go down within the specified K range (Figure
4a). Therefore, I fitted the model with K values from 5 to 150 with 10 as the increment instead. I identified

75 as the K for the maximum accuracy and fitted the model again with this value (Figure 4b). The fitted
KNN model was then used to predict the IHD cases in the testing set.

Using the combination of PCA and KNN, the overall accuracy of my predicted THD cases was 0.842 with
a 95% confidence interval of (0.764, 0.902). Compared to the algorithm developed with PCA and logistic
regression, this algorithm had a higher sensitivity of 0.923, a lower specificity of 0.746, and a higher Fj score
of 0.898. I plotted the ROC and observed an AUC of 0.889 (Figure 5).

KNN

The previous two algorithms developed based on selected PCs already performed well in predicting IHD cases.
However, people who want to implement these two algorithms have to use the PCA rotations to transform
their data first. That could increase the burden of using these algorithms, particularly in clinical settings.
Also, the PCs no longer have biological meaning and, therefore, could be difficult to interpret. With these
concerns, | developed another KNN-based algorithm with 1,422 predictors, including 1,415 serum metabolites.

Given that the sample size of my study is not large, I used 10-fold cross-validation with bootstrapping as
the resampling scheme to select the parameter K again. I found 65 as the K that maximized the model
accuracy after fitting the model with K values from 5 to 150 with 10 as the increment (Figure 6). I then
fitted the model in the training set and predicted the THD cases in the testing set. The overall accuracy
of my predicted THD cases was 0.800 with a 95% confidence interval of (0.717, 0.868). Compared to the
algorithm developed with PCA and KNN, this KNN algorithm had a slightly higher sensitivity of 0.939. But
the specificity dropped to 0.636. The F} score was 0.894. I plotted the ROC and observed an AUC of 0.897
(Figure 7).

Random forest

The last approach I used to train my model was random forest. It was more computationally intensive
because predictors had to be randomly selected using bootstrapping to predict a single tree. To stabilize
accuracy, hundreds of trees might need to be predicted. Also, I had to change the number of predictors
being sampled at each bootstrap iteration to find the one that maximized the accuracy. Therefore, I started
training the model with 15 trees and tuning the number of predictors to be sampled between 10 and 1000
with 100 as the increment. I implemented a 5-fold cross-validation. The plot of error against the number of
trees showed that the accuracy improved as I added more trees and stabilized at around 100 trees (Figure 8a
& 9a). In my second attempt, I changed the number of trees to be predicted to be 100. The plot of accuracy
by the number of randomly sampled predictors did show a maximum point. However, it seems that the range
of 10 to 1000 predictors was too large (Figure 8b & 9b). So, I further tuned the number of predictors to be
sampled from 10 to 500 with 20 as the increment. It turned out that randomly sampling 150 predictors and
predicting 100 trees maximized and stabilized the accuracy of model prediction (Figure 8c & 9c¢).

The overall accuracy of my predicted IHD cases from the random forest model was 0.900 with a 95% confidence
interval of (0.832, 0.947). This algorithm had a high sensitivity of 0.939, a high specificity of 0.855, a high Fy
score of 0.927, and a high AUC of 0.958 (Figure 10).

Conclusion

In this project, I aimed to develop an algorithm that uses serum metabolites, cardiometabolic biomarkers,
and self-reported phenotypic data to predict ischemic heart disease (IHD) status in a European population. I
obtained my data from a paper published early this year on Nature Medicine (3). For data preprocessing, I
removed observations with missing metabolite measures and predictors with at least around 30% of missing
data. For predictors with a small amount of missing data, I replaced the missing values with median values.
Additionally, predictors with near-zero variance were also excluded. I used 4 approaches to train my model.
The first two approaches used PCA to reduce dimension from 1,422 predictors. A logistic regression and a
KNN-based algorithm were trained and fitted with the selected 69 PCs. The 3rd approach was also based on
KNN but fitted the model with the 1,422 predictors. The last approach used random forest to develop the
algorithm. I summarized the sensitivity, specificity, overall accuracy, F; score, and AUC of all models in a

table (Table 1). T also conducted an ensemble to combine results from the KNN model and random forest
model and showed the performance at the end of the table. ROC curves were plotted on the same figure for
comparison (Figure 11 & 12).

According to the table, the two algorithms developed with PCs had lower sensitivity than those trained
with the original predictors. The KNN and random forest algorithms both had a very high sensitivity of
0.938. The two algorithms developed with KNN had lower specificity than the others. The random forest
model also had a relatively high specificity of 0.855. The KNN-based algorithm with biologically meaningful
predictors had the lowest overall accuracy, while the random forest model had the highest overall accuracy.
The algorithms with PCs as predictors and used logistic regression for fitting had an overall accuracy of 0.875,
while the one using PCs and KNN had an accuracy of 0.842. When evaluating with F} score, the random
forest model performed the best while the rest three models performed similarly. Finally, the random forest
model had the highest AUC, followed by the PCA + KNN model. It is interesting that the ensemble of KNN
and random forest did not further improve the model performance. In conclusion, the algorithm developed
with random forest performed the best in all measures (Table 1).

My analysis that used 4 different approaches to train the algorithm is successful. I identified the random
forest algorithm as the best among the 4 according to all 5 measures. The sensitivity of predicting IHD is
particularly high. It is particularly important because we don’t want to miss any THD cases if the patient really
has THD. Early detection could improve the prognosis and lower mortality. Moreover, the high sensitivity of
my algorithm is not at the cost of low specificity. The specificity is also reasonably high. That could lower
the probability of identifying healthy people as IHD cases and avoid overtreatment. It is also great that
a random forest-based algorithm does not require extensive data transformation. Future implementation
in clinical settings could be more efficient. If I had more time to spend on this project, I would look for
metabolomics data in other populations and develop an algorithm that has higher generalizability.

Reference

1. Tsao, C.W., et al. Heart Disease and Stroke Statistics-2022 Update: A Report From the American
Heart Association. Circulation 145, €153-¢639 (2022).

2. Brinks, J., Fowler, A., Franklin, B.A. & Dulai, J. Lifestyle Modification in Secondary Prevention:
Beyond Pharmacotherapy. Am J Lifestyle Med 11, 137-152 (2017).

3. Fromentin, S., et al. Microbiome and metabolome features of the cardiometabolic disease spectrum.
Nat Med 28, 303-314 (2022).

Appendix

library(tidyverse)
library(readxl)
library(caret)
library (RNOmni)
library(pROC)
library(randomForest)
library(kableExtra)

#Read n
meta <- read_excel("/Users/xgu/Documents/Harvard/Fall 2022/BST260/bst260project/41591_2022_1688_MOESM3_]
13, 1, "NA", "guess")
demo <- read_excel("/Users/xgu/Documents/Harvard/Fall 2022/BST260/bst260project/41591_2022_1688_MOESM3_.
10, 1, "NA", c("text", "text", rep("numeric", 22), "

#Filter IHD cases and controls, keep phynotypic data and cardiometabolic biomarkers
demo_new <- demo %>%

filter(Status %in’% c("IHD372", "MMC372")) %>%

mutate (case_when(Status == "MMC372" ~ 0, TRUE ~ 1),
case_when(Gender == "Male" ~ 1, TRUE ~ 0)) %>%
rename ("Age (years)", "Fasting plasma triglycerides (mmol/L)",
"Fasting plasma adiponectin (mg/L)", "Fasting plasma CRP (mg/L)",
"Systolic blood pressure (mmHg)'", "Diastolic blood pressure (mmHg)",
"Left ventricular ejection fraction (%)", "Physical activity (h/week)") %>%

select(ID, case, age, tag, adiponectin, crp, sbp, dbp, Gender, lvef, act)

#Filter IHD cases and controls, keep metabolites
meta_new <- meta %>%
filter(Status %in% c("IHD372", "MMC372")) %>%
select(-c(Status))

#Merge
main <- demo_new %>%
left_join(meta_new, "ID")

#Check missing

pctmiss <- function(x){
pctmiss <- sum(is.na(x))/length(x)
return(pctmiss)

}

miss <- as.data.frame(sapply(main, pctmiss))

#Further filtering and missing replacement
main <- main %>%
select(-c("lvef", "act")) %>%

filter(acetate != "NA", spermidine != "NA") %>%
mutate (case_when(is.na(tag) ~ median(tag, TRUE), TRUE ~ tag),
case_when(is.na(adiponectin) ~ median(adiponectin, TRUE), TRUE ~ adipone:
case_when(is.na(crp) ~ median(crp, TRUE), TRUE ~ crp),
case_when(is.na(sbp) ~ median(sbp, TRUE), TRUE ~ sbp),
case_when(is.na(dbp) ~ median(dbp, TRUE), TRUE ~ dbp))
head(main)

A tibble: 6 x 1,522

ID case age tag adipon-~1 crp sbp dbp Gender acetate acetone
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 x14MCx1158 0 48 1.00 5.01 0.897 104 60.5 0 -3.91 -3.91
2 x14MCx2932 0 49 1.00 4.03 1.11 111 70 0 -3.91 -3.22
3 x14MCx2498 0 54 1.48 6.26 2.05 106. 68.5 1 -3.51 -3.51
4 x14MCx2237 0 47 0.787 3.44 0.67 138 78 1 -3.91 -4.95
5 x30MCx1828 0 66 0.59 11.0 0.427 110. 65.5 0 -3.91 -3.91
6 x30MCx1314 0 54 1.41 2.6 1.4 128. 75.5 1 -2.81 -3.91
... with 1,511 more variables: artemisin <dbl>, “beta-sitosterol”™ <dbl>,

betaine <dbl>, “betaine-aldehyde® <dbl>, butyrylcarnitine <dbl>,

catechol <dbl>, cellotetraose <dbl>, choline <dbl>, “D-trehalose™ <dbl>,

"D-lyxose™ <dbl>, “D-malate” <dbl>, “D-sorbitol” <dbl>, “D-threitol”™ <dbl>,
decanoylcarnitine <dbl>, glyceraldehyde <dbl>, ethanol <dbl>,

ethanolamine <dbl>, formate <dbl>, glucoheptonate <dbl>, glycolate <dbl>,

halostachine <dbl>, hydroquinone <dbl>, isovalerylcarnitine <dbl>,

#Keep the predictors
var <- main %>% select(-c("ID", "case"))

#Identtfy non—-informative predictors with very low wvariance
nzv <- nearZeroVar(var)

col_index <- setdiff(1:ncol(var), nzv)

length(col_index)

[1] 1422

#Remove mnon—informative predictors
var_proc <- var[,col_index]

#Check normality
normality <- data.frame()
for (i in 1:length(colnames(var_proc))){
normality[i, 1] <- colnames(var_proc) [i]
normality[i, 2] <- shapiro.test(pull(var_proc[,i]))$p.value
colnames(normality) <- c("metabolites", "shapiro.p")
}
table(ifelse(normality$shapiro.p >0.05, 1, 0)) #Only 101 normally distributed predictors

##
0 1
1321 101

#which(normality$shapiro.p > 0.05)

#Exponentiate the log metabolites

m <- as.matrix(var_proc[,8:1422])

exp_m <- exp(m)

var_proc_exp <- cbind(var_proc[,1:7], as.data.frame(exp_m))

#Inverse-normal-transform the predictors
var_proc_int <- as.data.frame(sapply(var_proc_exp, RankNorm))

#Check mormality again
normality_int <- data.frame()
for (i in 1:length(colnames(tibble(var_proc_int)))){
normality_int[i, 1] <- colnames(tibble(var_proc_int)) [i]
normality_int[i, 2] <- shapiro.test(pull(tibble(var_proc_int)[,i]))$p.value
colnames (normality_int) <- c("metabolites", "shapiro.p")
}
table(ifelse(normality_int$shapiro.p >0.05, 1, 0)) #Now have 840 normally distributed predictors

##
0 1
582 840

#which(normality_int$shapiro.p > 0.05)

hist(var_proc_exp$ oleoylcarnitine (C18:1), main = "Fig la. Histogram of oleoylcarnitine", xlab = "Ole

Fig 1la. Histogram of oleoylcarnitine

° S
2
5 8-
g
T o _|
Yo}
o
[T T T T 1
05 1.0 15 2.0 25 3.0
Oleoylcarnitine (C18:1)
hist(var_proc_int$ oleoylcarnitine (C18:1)°, main = "Fig 1b. Histogram of INT-transformed oleoylcarniti:
Fig 1b. Histogram of INT-transformed oleoylcarnitine (C18:1))
o
a7 —_—
o
8
o _|
> ©
2
] o _|
=] ©
g
w Q
<
8 —
o
[I I I I I 1
-3 -2 -1 0 1 2 3
INT(Oleoylcarnitine (C18:1))
hist(var_proc_exp$ S-methylcysteine sulfoxide, main = "Fig 2a. Histogram of S-methylcysteine sulfoxide
Fig 2a. Histogram of S—methylcysteine sulfoxide
o
S —_ —
o
3 4
<
> o
=]
g 8-
w N
o
8 -
O I

[T T T 1
0 5 10 15 20

S—-methylcysteine sulfoxide

hist(var_proc_int$ S-methylcysteine sulfoxide™, main = "Fig 2b. Histogram of INT-transformed S-methylcy:

Fig 2b. Histogram of INT-transformed S—methylcysteine sulfoxide

80 100 120

Frequency
40 60

20
1

INT(S—-methylcysteine sulfoxide)

#Split data

set.seed(34324)

main_new <- cbind(main[,1:2], var_proc_int)

train_index <- createDataPartition(main_new$case, 1,
train_set <- main_new[train_index,]

test_set <- main_new[-train_index,]

#X and Y matriz

x_train <- as.matrix(train_set[,3:1424])
y_train <- factor(train_set$case)

x_test <- as.matrix(test_set[,3:1424])
y_test <- factor(test_set$case)

#PCA
col_means <- colMeans(x_train)

pca <- prcomp(x_train)
s_pca_3 <- summary(pca)$importance[3,] ##69 pc
head(s_pca_3, 69)

PC1 PC2 PC3 PC4 PC5 pPC6 PC7

0.09528 0.14187 0.17858 0.21450 0.24215 0.26855 0.29403 O.

PC11 PC12 PC13 PC14 PC15 PC16 PC17

0.36595 0.37976 0.39264 0.40522 0.41732 0.42849 0.43910 O.

pPC21 PC22 pPC23 pPC24 PC25 PC26 pCc27

0.47727 0.48587 0.49381 0.50149 0.50892 0.51619 0.52337 O.

PC31 PC32 PC33 PC34 PC35 PC36 PC37

0.54863 0.55446 0.56017 0.56585 0.57135 0.57666 0.58171 O.

PC41 PC42 PC43 pPC44 PC45 PC46 PC47

0.60116 0.60573 0.61013 0.61444 0.61872 0.62298 0.62701 O.

PC51 PC52 PC53 PC54 PC55 PC56 PC57

0.64255 0.64624 0.64986 0.65345 0.65694 0.66041 0.66380 O.

#i# pPCé61 pPC62 PC63 pPC64 PC65 PC66 pPC67

0.67691 0.68005 0.68315 0.68620 0.68922 0.69224 0.69519 O.

#New PC predictors
pc <- 69
x_train_pc <- pca$x[,1:pc]

#PCA + Logistic

glm_tmp <- as.data.frame(cbind(train_set$case, x_train_pc)) #Merge

glm_tmp <- glm_tmp %>% rename(V1)
fit_glm <- glm(case ~., glm_tmp, "binomial")

0

PC8
31393
PC18
44940
PC28
53013
PC38
58672
PC48
63098
PC58
66717
PC68
69808

.8,

PC9
0.33268
PC19
0.45886
PC29
0.53645
PC39
0.59164
PC49
0.63494
PC59
0.67048
PC69
0.70096

FALSE)

PC10

.35060

PC20

.46815

PC30

.54261

pPC40

.59644

PC50

.63877

PC60

.67372

cases with PCs

x_test_pc_pre <- sweep(x_test,2,col_means) %x*} pca$rotation

x_test_pc <- x_test_pc_prel,1:pc]

y_prob <- predict(fit_glm, as.data.frame(x_test_pc), "response")
y_pred_glm <- factor(ifelse(y_prob > 0.5, 1, 0))
confusionMatrix(y_pred_glm, y_test)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Confusion Matrix and Statistics

Reference

Prediction 0 1
0O 58 8
1 7 47

Accuracy :

No Information Rate :
: 5.161e-15

P-Value [Acc

Mcnemar's Test P-Value :

Sensitivity :
Specificity :

Pos Pred Value :

Neg Pred Value :
Prevalence :
Detection Rate :
Detection Prevalence :
Balanced Accuracy :

'Positive’

95% CI

> NIR]

Kappa :

Class :

F_meas(y_pred_glm, y_test,

##

[1] 0.8895706

#ROC
roc_glm <- roc(as.factor(test_set$case), y_prob)
plot(roc_glm,

TRUE,

0.875
(0.8022, 0.9283)
0.5417

0.7479

.8923
.8545
.8788
.8704
.5417
.4833
.5500
.8734

O O O O O O oo

2) #F_1 score with beta=2

"best", "line", TRUE, TRUE,

c(0,1), c(1,0), "Red", "Fig 3. ROC for PCA + Logistic")

Fig 3. ROC for PCA + Logistic

o |
—
0.234 (0.831, 0.927)

@ |

o
23S
a AUC: 0.946
&S

~

o

o |

o

T T I
0.0 05 1.0
1 - Specificity
#PCA + KNN
set.seed(5436)
b <- 10
control_pca <- trainControl(method = "cv", number = b, p = .9)
train_pcaknn <- train(x_train_pc, y_train,
method = "knn",

tuneGrid = data.frame(k = seq(2,100,20)),
trControl = control_pca)
ggplot (train_pcaknn, highlight = TRUE) +
ggtitle("Fig 4a. Accuracy at different K values (PCA+KNN)")

Fig 4a. Accuracy at different K values (PCA+KNN)

0.800 -

o
3
3
a

0.750 -

Accuracy (Cross-Validation)

0.725-

' '
60 80

40
#Neighbors
#Second attempt
set.seed(5432)
b <- 10
control_pca <- trainControl(method = "cv", number = b, p = .9)
train_pcaknn2 <- train(x_train_pc, y_train,
method = "knn",

tuneGrid = data.frame(k = seq(5,150,10)),
trControl = control_pca)
ggplot (train_pcaknn2, highlight = TRUE) +
ggtitle("Fig 4b. Accuracy at different K values (PCA+KNN, 2nd attempt)")

10

Fig 4b. Accuracy at different K values (PCA+KNN, 2nd attempt)

0.81-

o o 4
5 = @
@ < S

Accuracy (Cross-Validation)
g

0.76 -

#Neighbors
train_pcaknn2$bestTune
k
8 75
train_pcaknn2$results$Accuracy
[1] 0.7554422 0.7946003 0.7905612 0.7843963 0.7908163 0.8010204 0.7968537

[8] 0.8094813 0.7928571 0.7948980 0.7886480 0.7740646 0.7720238 0.7636480
[15] 0.7657738

fit_pcaknn <- knn3(x_train_pc, y_train, train_pcaknn2$bestTune$k)
y_pred_pcaknn <- predict(fit_pcaknn, x_test_pc, "class")
y_pred_pcaknn_p <- predict(fit_pcaknn, x_test_pc, "prob")

confusionMatrix(y_pred_pcaknn, y_test)

Confusion Matrix and Statistics

##

Reference

Prediction O 1

#it 0 60 15

1 5 40

##

Accuracy : 0.8333
95% CI : (0.7544, 0.8951)
No Information Rate : 0.5417
#it P-Value [Acc > NIR] : 1.512e-11
##

Kappa : 0.6596
##

Mcnemar's Test P-Value : 0.04417
#it

Sensitivity : 0.9231
Specificity : 0.7273
Pos Pred Value : 0.8000
Neg Pred Value : 0.8889
Prevalence : 0.5417
Detection Rate : 0.5000
Detection Prevalence : 0.6250
Balanced Accuracy : 0.8252
##

11

'Positive' Class : O
##

F_meas(y_pred_pcaknn, y_test, 2)

[1] 0.8955224

#ROC
roc_pcaknn <- roc(as.factor(test_set$case), y_pred_pcaknn_p[, 2])
plot(roc_pcaknn, "best", "line", TRUE, TRUE,
TRUE, c(0,1), "Red", "Fig 5. ROC for PCA + KNN")
Fig 5. ROC for PCA + KNN

o |

o | 0.420 (0.800, 0.873)

o
> @
s °
@ AUC: 0.889
&S

o

o

o |

o

T T I
0.0 0.5 1.0
1 - Specificity
#KNN
set.seed(3245)
b <- 10
control_knn <- trainControl(Pew? , b, .9)
train_knn <- train(x_train, y_train,
I|knnll s

data.frame(seq(5,150,10)),
control_knn)
ggplot (train_knn, TRUE) +
ggtitle("Fig 6. Accuracy at different K values (KNN)")

Fig 6. Accuracy at different K values (KNN)
0.79-
0.78-
0.77 -

0.76 -

Accuracy (Cross-Validation)

0.75-

#Neighbors

train_knn$bestTune

k
7 65

12

train_knn$results$Accuracy

[1] 0.7616026 0.7907340 0.7910371 0.7846577 0.7889112 0.7870016 0.7972038
[8] 0.7906508 0.7825337 0.7762375 0.7599978 0.7454977 0.7474092 0.7431557

[15] 0.7494057

fit_knn <- knn3(x_train, y_train, train_knn$bestTune$k)
y_pred_knn <- predict(fit_knn, x_test, "class")
y_pred_knn_p <- predict(fit_knn, x_test, "prob")

confusionMatrix(y_pred_knn, y_test)

Confusion Matrix and Statistics

##

Reference

Prediction O 1

0 61 20

1 4 35

##

Accuracy : 0.8

#it 95% CI : (0.7172, 0.8675)

No Information Rate : 0.5417

#it P-Value [Acc > NIR] : 3.087e-09

##

Kappa : 0.588

#it

Mcnemar's Test P-Value : 0.0022

##

Sensitivity : 0.9385

Specificity : 0.6364

Pos Pred Value : 0.7531

#it Neg Pred Value : 0.8974

Prevalence : 0.5417

Detection Rate : 0.5083

Detection Prevalence : 0.6750

#i# Balanced Accuracy : 0.7874

#it

'Positive' Class : O

##

F_meas(y_pred_knn, y_test, 2)

[1] 0.8944282

#ROC

roc_knn <- roc(as.factor(test_set$case), y_pred_knn_p[, 2])

plot(roc_knn, "best", "line", TRUE,
c(0,1), "Red", "Fig 7. ROC for KNN")

13

TRUE,

TRUE,

Fig 7. ROC for KNN

o |
—
0.408 (0.831, 0.891)
@ |
o
> ©
3 °
2 AUC: 0.897
&S
o
o
o |
o
T T I
0.0 05 1.0
1 - Specificity
#Random forest
set.seed (4536)
b <-5
control_rf <- trainControl("cv", b, .9)
train_rf <- train(x_train, y_train,
Dip®
15,
control_rf,
data.frame(seq(10, 1000, 100)))
ggplot (train_rf, TRUE) +

ggtitle("Fig 8a. Accuracy at different number of selected predictors")

Fig 8a. Accuracy at different number of selected predictors

0.86-

14 o 4
@ @ =
S R i

Accuracy (Cross—Validation)

o
5
@

0 250 500 750
#Randomly Selected Predictors

train_rf$bestTune

mtry
4 310

train_rf$results$Accuracy

[1] 0.7660223 0.8343857 0.8550473 0.8613187 0.8385954 0.8405713 0.8384880
[8] 0.8448024 0.8550902 0.8448239
fit_rf <- randomForest(x_train, y_train,
train_rf$bestTune$mtry,
10)
plot(fit_rf, "Fig 9a. Error by number of trees")

14

Fig 9a. Error by number of trees

0.45
1

Error
0.35
!

0.25
1

0.15
1

0 100 200 300 400 500
trees

set.seed(6543)

b <-5
control_rf <- trainControl(e, b, .9)
train_rf2 <- train(x_train, y_train,

nrf,

100,

control_rf,
data.frame(seq(10, 1000, 100)))

ggplot (train_rf2, TRUE) +

ggtitle("Fig 8b. Accuracy at different number of selected predictors (2nd attempt)")

Fig 8b. Accuracy at different number of selected predictors (2nd attempt)

0.87-

o o o
o) @
kN a 3

Accuracy (Cross—Validation)

o
)
@

0 250 500 750
#Randomly Selected Predictors

train_rf2$bestTune

mtry
2 110

train_rf2$results$Accuracy

[1] 0.8239905 0.8695876 0.8468213 0.8571521 0.8613402 0.8509880 0.8529854
[8] 0.8549828 0.8550258 0.8529639

fit_rf2 <- randomForest(x_train, y_train,
train_rf2$bestTune$mtry,
10)
plot(fit_rf2, "Fig 9b. Error by number of trees (2nd attempt)")

15

Fig 9b. Error by number of trees (2nd attempt)

0.40
1

0.30
1

Error

0.20
1

0.10
1

0 100 200 300 400 500
trees

set.seed(232)

b <-5
control_rf <- trainControl(e, b, .9)
train_rf3 <- train(x_train, y_train,

nrf,

100,

control_rf,
data.frame(seq(10, 500, 20)))

ggplot (train_rf3, TRUE) +

ggtitle("Fig 8c. Accuracy at different number of selected predictors (3rd attempt)")

Fig 8c. Accuracy at different number of selected predictors (3rd attempt)

° ° ° °
% % % =
2 3 3 3

Accuracy (Cross—Validation)

o
)
@

0.82- I I I I I I
0 100 200 300 400 500
#Randomly Selected Predictors

train_rf3$bestTune

mtry
8 150

train_rf3$results$Accuracy

[1] 0.8220576 0.8531787 0.8593643 0.8592998 0.8656143 0.8572595 0.8531787
[8] 0.8759021 0.8613832 0.8573239 0.8634450 0.8593428 0.8592998 0.8490120
[15] 0.8593428 0.8573454 0.8551976 0.8676117 0.8469502 0.8552405 0.8593213
[22] 0.8675687 0.8614261 0.8573454 0.8490120

fit_rf3 <- randomForest(x_train, y_train,
train_rf3$bestTune$mtry,
10)
plot(fit_rf3, "Fig 9c. Error by number of trees (3rd attempt)")

16

Fig 9c. Error by number of trees (3rd attempt)

n
(f). —
o
g |
o
. &
5 o
]
g |
o
9 |
o
T T T = T T I
0 100 200 300 400 500
trees
y_pred_rf <- predict(fit_rf3, x_test, "class")
y_pred_rf_p <- predict(fit_rf3, x_test, "prob")

confusionMatrix(y_pred_rf, y_test)

Confusion Matrix and Statistics

##

Reference

Prediction 0 1

0 60 6

#i# 1 5 49

##

Accuracy : 0.9083
95% CI : (0.8419, 0.9533)
No Information Rate : 0.5417
#t P-Value [Acc > NIR] : <2e-16
#it

Kappa : 0.8151
##

Mcnemar's Test P-Value : 1

##

Sensitivity : 0.9231
Specificity : 0.8909
Pos Pred Value : 0.9091
Neg Pred Value : 0.9074
Prevalence : 0.5417
Detection Rate : 0.5000
Detection Prevalence : 0.5500
Balanced Accuracy : 0.9070
##

'Positive' Class : O

##

F_meas(y_pred_rf, y_test, 2)

[1] 0.9202454

roc_rf <- roc(as.factor(test_set$case), y_pred_rf_pl[, 2])
plot(roc_rf, "best", "line", TRUE,
c(0,1), "Red", "Fig 10. ROC for RF")

17

TRUE,

TRUE,

Fig 10. ROC for RF

o
e
0.486 (0.923, 0.909)
[ee]
@
> 9 |
z °
2 AUC: 0.953
8 3 -
N
g
o
2
T T I
0.0 0.5 1.0
1 - Specificity
#Ensemble

p_knn <- y_pred_knn_p

p_rf <- y_pred_rf_p / rowSums(y_pred_rf_p)
p_pcaknn <- y_pred_pcaknn_p

p_glm <- as.matrix(cbind(1-y_prob, y_prob))
colnames(p_glm) <- c(0, 1)

p <~ (p_rf + p_knn)/2

y_pred <- factor(apply(p, 1, which.max)-1)
confusionMatrix(y_pred, y_test)

Confusion Matrix and Statistics

#it

Reference

Prediction 0 1

060 9

1 5 46

#i#

Accuracy : 0.8833

95% CI : (0.812, 0.9347)
No Information Rate : 0.5417

P-Value [Acc > NIR] : 8.505e-16
##

Kappa : 0.7637

##

Mcnemar's Test P-Value : 0.4227
##

Sensitivity : 0.9231
Specificity : 0.8364
Pos Pred Value : 0.8696
Neg Pred Value : 0.9020
Prevalence : 0.5417
Detection Rate : 0.5000
Detection Prevalence : 0.5750
#i# Balanced Accuracy : 0.8797
##

'Positive' Class : O

##

18

F_meas(y_pred, y_test, 2)

[1] 0.9118541

roc_es <- roc(as.factor(test_set$case), pl[, 21)
plot(roc_es, "best", "line", TRUE, TRUE, TRUE,
c(0,1), "Red", "Fig 11. ROC for Ensemble of RF & KNN")

Fig 11. ROC for Ensemble of RF & KNN

o |
—
© 0.484 (0.923, 0.891)
@
> 9 |
s °
@ AUC: 0.942
8 3 -
N
g
o
2
I I I
0.0 0.5 1.0
1 - Specificity

#Combine ROCs

ggroc(list(roc_glm, roc_pcaknn, roc_knn, roc_rf, roc_es), TRUE) +
theme_linedraw() +
ggtitle("Fig 12. ROCs for all algorithms") +

geom_segment (aes (0, 1, 0, 1), "grey", "dashed") +
scale_colour_discrete(c("PCA + Logistic", "PCA + KNN", "KNN", "Random forest", "Ensemble")) -
labs("Models")

Fig 12. ROCs for all algorithms

1.00 T 1
. —— —

h[_r/_/)/

—

0.75
[J y Models

PCA + Logistic
—— PCA +KNN

— KNN

sensitivity
o
@
g

— Random forest

Ensemble

0.25

f
I/

0.00 ‘

O.bO 0.25 0.50 0.75 1.00
1 - specificity

#Create a summary table
summary <- data.frame()
summary[1,1] <- round(confusionMatrix(y_pred_glm, y_test)$byClass[1], 3)
summary[1,2] <- round(confusionMatrix(y_pred_glm, y_test)$byClass[2], 3)
summary[1,3] <- round(confusionMatrix(y_pred_glm, y_test)$overall["Accuracy"], 3)
summary[1,4] <- round(F_meas(y_pred_glm, y_test, 2), 3)
summary[1,5] <- round(roc_glm$auc, 3)

summary[2,1] <- round(confusionMatrix(y_pred_pcaknn, y_test)$byClass[1], 3)
summary[2,2] <- round(confusionMatrix(y_pred_pcaknn, y_test)$byClass[2], 3)

19

Table 1: Table 1. Summary of performance measures for all algorithms

Sensitivity | Specificity | Overall accuracy | F_1 score | AUC
PCA + Logistic 0.892 0.855 0.875 0.890 | 0.946
PCA + KNN 0.923 0.727 0.833 0.896 | 0.889
KNN 0.938 0.636 0.800 0.894 | 0.897
Random forest 0.923 0.891 0.908 0.920 | 0.953
Ensemble of KNN & RF 0.923 0.836 0.883 0.912 | 0.942

summary[2,3] <- round(confusionMatrix(y_pred_pcaknn, y_test)$overall["Accuracy"], 3)
summary[2,4] <- round(F_meas(y_pred_pcaknn, y_test, 2), 3)
summary[2,5] <- round(roc_pcaknn$auc, 3)

summary[3,1] <- round(confusionMatrix(y_pred_knn, y_test)$byClass[1], 3)
summary[3,2] <- round(confusionMatrix(y_pred_knn, y_test)$byClass[2], 3)
summary[3,3] <- round(confusionMatrix(y_pred_knn, y_test)$overall["Accuracy"], 3)
summary[3,4] <- round(F_meas(y_pred_knn, y_test, 2), 3)

summary[3,5] <- round(roc_knn$auc, 3)

summary[4,1] <- round(confusionMatrix(y_pred_rf, y_test)$byClass[1], 3)

summary [4,2] <- round(confusionMatrix(y_pred_rf, y_test)$byClass[2], 3)

summary [4,3] <- round(confusionMatrix(y_pred_rf, y_test)$overall["Accuracy"], 3)
summary[4,4] <- round(F_meas(y_pred_rf, y_test, 2), 3)

summary [4,5] <- round(roc_rf$auc, 3)

summary[5,1] <- round(confusionMatrix(y_pred, y_test)$byClass[1], 3)

summary [6,2] <- round(confusionMatrix(y_pred, y_test)$byClass[2], 3)

summary [6,3] <- round(confusionMatrix(y_pred, y_test)$overall["Accuracy"], 3)
summary [5,4] <- round(F_meas(y_pred, y_test, 2), 3)

summary [6,5] <- round(roc_es$auc, 3)

rownames (summary) <- c("PCA + Logistic", "PCA + KNN", "KNN", "Random forest", "Ensemble of KNN & RF")
colnames (summary) <- c("Sensitivity", "Specificity", "Overall accuracy", "F_1 score", "AUC")

summary %>%

kbl ("Table 1. Summary of performance measures for all algorithms") %>%
kable_material(c("striped"))

20

	Introduction
	Exploratory data analysis
	Methodologies to use

	Results
	PCA + Logistic regression
	PCA + KNN
	KNN
	Random forest

	Conclusion
	Reference
	Appendix

